Mock Exam Geometry

To be discussed on January 12, 2015
Solutions will be posted on Nestor afterwards.
Note: Usage of Do Carmo's textbook is allowed. Give a precise reference to the theory you use for solving the problems. You may not use the result of any of the exercises.

Problem 1. $(7+7+7+9=30 \mathrm{pt}$.
Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a smooth (C^{∞}) unit-speed curve with positive curvature. I $\subset \mathbb{R}$ is an interval. The curvature and torsion at $\alpha(s)$ are denoted by $\kappa(s)$ and $\tau(s)$, respectively. Let $\bar{\alpha}: I \rightarrow \mathbb{R}^{3}$ be the offset-curve given by

$$
\bar{\alpha}(s)=\alpha(s)+f(s) n(s)
$$

where $n(s)$ is the normal of α at $\alpha(s)$ and $f: I \rightarrow \mathbb{R}$ is a smooth function. Note that, in general, $\bar{\alpha}$ is not a unit-speed curve. Furthermore, it is given that the normal $\bar{n}(s)$ of $\bar{\alpha}$ at $\bar{\alpha}(s)$ is equal to $\pm \mathfrak{n}(s)$.

1. Express the tangent vector $\bar{\alpha}^{\prime}(s)$ in the Frenet-Serret frame of α at $\alpha(s)$.
2. Show that $f(s)$ is constant.
3. Prove that the angle between the tangent vector of α at $\alpha(s)$ and the tangent vector of $\bar{\alpha}$ at $\bar{\alpha}(s)$ is constant.
4. Prove that there are constants a and b such that, for $s \in I$:

$$
a \kappa(s)+b \tau(s)=1 .
$$

Problem 2. $(8+8+7+7=30$ pt.)
Let S be a regular surface in \mathbb{R}^{3}.

1. Prove: If S contains a line, then this line is an asymptotic curve of S.

In the remainder of this assignment S is a one-sheeted hyperboloid of revolution given by $x^{2}+y^{2}-z^{2}=1$. Furthermore, p is the point $(1,0,0)$ of S.
2. Show that the principal curvatures of S at p are equal to 1 and -1 , and determine the curvature lines of S through p.
3. Determine both asymptotic directions of S at p, and the corresponding asymptotic curves of S through p.
4. Determine the asymptotic curves through an arbitrary point of S.

Problem 3. $(9+9+12=30$ pt. $)$
Let C be a regular curve (without self-intersections) in the half-plane $\{(x, 0, z) \mid x>0\}$. Let S be the surface of revolution in \mathbb{R}^{3} obtained by rotating C about the z-axis.

1. Which meridians of S are geodesics? Give a proof of your statement(s).
2. Which parallel circles of S are geodesics? Give a proof of your statement(s).

The angular momentum of a regular curve $\alpha: \mathbb{R} \rightarrow S$ at $\alpha(t)$ is equal to $\alpha(t) \wedge \alpha^{\prime}(t)$.
3. Prove that the z-component of the angular momentum of a geodesic on S is constant (i.e., independent of t).

